from your_project import load_model, train, predict
model = load_model('transformer')
model = train(model)
score = predict(model)
from your_project import load_model, train, predict, get_submodules
from greenformer import auto_fact
model = load_model('transformer')
model = auto_fact(module=model, rank=64, solver='random', num_iter=50, submodules=None)
model = train(model)
submodules = get_submodules(model,'bert-base')
model = auto_fact(module=model, rank=64, solver='svd', num_iter=50, submodules=None)
score = predict(model)
Faster and memory efficient training without sacrificing performance
Productionize a pre-trained model in a faster, lighter, and cheaper way
More efficient few-shot in-context learning using billions parameters models